Department | 自适应光学技术研究室(八室) |
Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient | |
Sun, Wenhan1,2,3; Wang, Shuai1,3; He, Xing1,3; Xu, Bing1 | |
Source Publication | JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION
![]() |
Volume | 35Issue:7Pages:1140-1148 |
2018-07-01 | |
Language | 英语 |
ISSN | 1084-7529 |
DOI | 10.1364/JOSAA.35.001140 |
Indexed By | SCI ; Ei |
WOS ID | WOS:000437284900007 |
EI Accession Number | 20182705393017 |
Subtype | J |
Abstract | Jacobi circle polynomials, which are orthogonal on the unit circle with orthogonal radial derivatives, have been developed previously. As the classical Zernike mode can be represented as a linear combination of Jacobi modes, Zernike wavefront modes can be reconstructed using Jacobi modes. Comparison of the Jacobi and Zernike modes for the modal approach indicates that a modal approach incorporating the Gram matrix with the Jacobi modes has potential application in high-sampling wavefront gradient sensors. The Gram matrix method using the Jacobi modes can be extended to annular pupils. (C) 2018 Optical Society of America |
Keyword | Jacobian matrices Wavefronts |
WOS Keyword | ORTHONORMAL VECTOR POLYNOMIALS ; ZERNIKE POLYNOMIALS ; OPTICAL ABERRATIONS ; UNIT-CIRCLE ; BASIS-SET ; PUPILS ; EIGENFUNCTIONS ; LAPLACIAN ; SYSTEMS |
EI Keywords | Jacobian matrices ; Wavefronts |
EI Classification Number | 921.1 Algebra |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.ioe.ac.cn/handle/181551/9306 |
Collection | 自适应光学技术研究室(八室) |
Affiliation | 1.Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu; 610209, China; 2.Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu; 610209, China; 3.University of the Chinese, Academy of Sciences, Beijing; 100039, China |
Recommended Citation GB/T 7714 | Sun, Wenhan,Wang, Shuai,He, Xing,et al. Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION,2018,35(7):1140-1148. |
APA | Sun, Wenhan,Wang, Shuai,He, Xing,&Xu, Bing.(2018).Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient.JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION,35(7),1140-1148. |
MLA | Sun, Wenhan,et al."Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient".JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION 35.7(2018):1140-1148. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
2018-2073.pdf(3068KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment