IOE OpenIR  > 光电技术研究所博硕士论文
大视场级联超表面透镜的聚焦与成像设计方法研究
Alternative TitleResearch on focusing and imaging design method of cascaded meta-lens with large field of view
何德伟
Subtype硕士
Thesis Advisor赵泽宇
2019-05-28
Degree Grantor中国科学院光电技术研究所
Place of Conferral中国科学院光电技术研究所研究生部305教室
Degree Name工程硕士
Degree Discipline仪器仪表工程
Keyword超表面透镜,级联,大视场,成像,衍射极限
Abstract

    在常用的光学成像系统中,传统透镜主要依赖光在传播过程中因透镜厚度差而产生相位差的工作原理,实现聚焦与成像的功能,这对透镜的面形和厚度有着严格的要求,因而不利于光学系统的集成化和轻量化。

    超表面是一种由亚波长尺度的单元结构材料组合而成的阵列型膜层器件,又被称为二维超构材料,它能够通过自身亚波长单元结构阵列与电磁波束的相互作用,实现对电磁波振幅、偏振态、相位等基本信息的灵活调控。相比于传统光学透镜,超表面透镜表现出传统透镜不具备的轻量化、平面共形、方便集成等优越特性,因而被广泛应用于平面成像、全息成像、光束整形、超分辨光刻等研究领域。因此,超表面透镜有望突破传统光学透镜面形与尺寸厚度的限制,成为下一代光学器件。

然而,在实际成像应用中,单层超表面透镜仅能对小入射角度的光束进行调制,而轴外像差严重,极大限制了超表面透镜的成像应用。为了获取更大视场范围内的物空间信息,实现大视场成像,本文对超表面透镜的视场受限问题进行了分析研究,在紫外光与可见光波段内,提出了两种解决超表面透镜视场受限的方案,主要如下:

  1. 在紫外光375nm处,设计了偏振无关的双层级联超表面透镜,采用传输相位作为超表面透镜单元结构的相位调制方法,通过不同尺寸TiO2圆形纳米柱对线偏振入射光进行两次非球面相位调制,实现了60°视场范围内接近衍射极限的偏振无关聚焦与成像。
  2. 在可见光532±5nm波段,设计了基于几何位相的三层级联超表面透镜,通过不同旋向TiO2矩形纳米柱单元结构对左旋圆偏振入射光进行相应非球面相位调制,实现了90°视场范围内10nm带宽接近衍射极限的聚焦与成像。
Other Abstract

In the traditional optical imaging systems, lenses mainly rely on the principle of phase modulation caused by different thickness in the propagation of light to realize the function of focusing and imaging, which has strict requirements on the shape and thickness of lens, and thus is not conducive to the integration and lightweight of the optical system.

Metasurface is a kind of arrayed film devices, which is composed of sub-wavelength unit structures. It is also called two-dimensional metamaterial. Metasurface can flexibly control the basic information of electromagnetic waves, such as amplitude, polarization, phase, and so on, with the interaction between its sub-wavelength unit structure array and electromagnetic beam. Compared with traditional optical lenses, meta-lens are widely used in planar imaging, holography, beam shaping, super-resolution lithography and other fields due to their advantages such as lightweight, conformal plane and easy integration. Therefore, meta-lens is expected to break through the limitation on shape and thickness of traditional optical lens , and become the novel optical devices.

However, in practical imaging applications, a single-layer meta-lens can only modulate a beam with a small angle of incidence, while the off-axis aberration is severe, which greatly limits the imaging application of the meta-lens. In order to obtain the information of object space in a larger field of view and realize large field of view imaging, the limited field of view of meta-lens is analyzed and researched in this paper. In the ultraviolet and visible regions, two solutions to the limited field of view of meta-lens are proposed, which as follows:

1. At 375nm of ultraviolet light, a polarization-independent cascade meta-lens doublet is designed. The propagation phase is used as the phase modulation method of unit structures in the meta-lens. The polarization-independent focusing and imaging with resolution approximating the diffraction limit in the 60 degree field of view are realized by two aspheric phase modulations on linearly polarized incident light with different sizes of titanium dioxide nano-cylinders.

2. At 532±5nm waveband of visible light, the three-layer cascade meta-lens based on geometric phase is designed. Left circularly polarized incident light is modulated by different rotational titanium dioxide rectangular nano-cylinder units, and the focus and imaging with a bandwidth of 10nm and 90 field of view with resolution approximating the diffraction limit are achieved.

Subject Area物理学 ; 光学 ; 几何光学 ; 物理光学 ; 量子光学 ; 光学其他学科
MOST Discipline Catalogue工学 ; 工学::仪器科学与技术
Table of Contents

目录

1  绪言............................................................................................................... 1

1.1  引言.................................................................................................................. 1

1.2  超材料与超表面的发展概况.......................................................................... 2

1.3  超表面的成像研究进展.................................................................................. 5

1.3.1  平面成像................................................................................................... 6

1.3.2  全息成像................................................................................................... 7

1.4  大视场级联超表面透镜的研究现状.............................................................. 9

1.5  本文的研究目标............................................................................................ 12

1.6  论文研究内容与章节安排............................................................................ 13

2  基本理论和数值计算方法......................................................................... 15

2.1  引言................................................................................................................ 15

2.2  基本理论........................................................................................................ 15

2.2.1  矢量衍射理论......................................................................................... 15

2.2.2  传输相位原理......................................................................................... 17

2.2.3  几何相位原理......................................................................................... 17

2.3  数值计算方法................................................................................................ 20

2.3.1  光线追迹法............................................................................................. 21

2.3.2  时域有限差分法..................................................................................... 22

2.4  本章小结........................................................................................................ 23

3  紫外光大视场级联超表面透镜的聚焦与成像研究................................. 25

3.1  引言................................................................................................................ 25

3.2  超表面透镜的光学设计与仿真分析............................................................ 25

3.3  单元结构设计与仿真分析............................................................................ 32

3.4  超表面透镜的全模设计与聚焦成像仿真分析............................................ 33

3.5  本章小结........................................................................................................ 37

4  可见光大视场级联超表面透镜的聚焦与成像研究................................. 39

4.1  引言................................................................................................................ 39

4.2  超表面透镜的光学设计与仿真分析............................................................ 39

4.3  单元结构设计与仿真分析............................................................................ 46

4.4  超表面透镜的全模设计与聚焦成像仿真分析............................................ 48

4.4.1  中心波长处的大视场聚焦与成像仿真分析......................................... 50

4.4.2  5nm带宽的大视场聚焦与成像仿真分析......................................... 54

4.4.3  10nm带宽的大视场聚焦与成像仿真分析....................................... 57

4.5  本章小结........................................................................................................ 60

5  结束语......................................................................................................... 61

5.1  论文主要内容................................................................................................ 61

5.2  研究工作展望................................................................................................ 62

参考文献..................................................................................................................... 65

  ......................................................................................................................... 73

作者简介及在学期间发表的学术论文与研究成果................................................. 75

 

图目录

1.1  二维广义斯涅尔折射定律示意图................................................................. 3

1.2  三维广义折、反射定律示意图..................................................................... 5

1.3  超表面结构与成像图..................................................................................... 6

1.4  宽带消色差超表面......................................................................................... 7

1.5  超表面宽带彩色全息成像............................................................................. 8

1.6  超表面全息成像............................................................................................. 9

1.7  双层超透镜结构与仿真结果....................................................................... 10

1.8  超表面后向反射镜与成像结果.................................................................... 11

1.9  多层超表面透镜与成像结果........................................................................ 11

2.1  庞加莱球上的几何相位原理图................................................................... 18

2.2  研究过程图示............................................................................................... 20

2.3  网格划分示意图........................................................................................... 22

3.1  单层超表面透镜分别对应的仿真分析图................................................... 27

3.2  双层超表面透镜分别对应的相位轮廓分布图........................................... 30

3.3  双层超表面透镜对应的仿真分析图........................................................... 31

3.4  超表面透镜单元结构设计与仿真结果分析............................................... 32

3.5  等比缩放后的一维双层超表面阵列结构图............................................... 34

3.6  x-z平面上不同入射角对应的双层超表面阵列结构CST仿真分析图.... 35

3.7  焦平面上不同入射角对应成像仿真结果图............................................... 37

4.1  三层超表面透镜分别对应的相位轮廓分布图........................................... 41

4.2  三层超表面透镜相位调制光路图和传递函数关系图............................... 43

4.3  中心波长处不同入射角对应的聚焦光斑归一化强度图.............................. 44

4.4  5nm带宽处不同入射角对应的聚焦光斑归一化强度图....................................... 44

4.5  10nm带宽处不同入射角对应的聚焦光斑归一化强度图..................................... 45

4.6  可见光三层超表面的单元结构示意图....................................................... 46

4.7  10nm带宽内的单元结构透射效率关系图................................................. 48

4.8  三层超表面透镜工作示意图....................................................................... 48

4.9  1D三层超表面阵列结构示意图................................................................. 49

4.10  中心波长532nm处不同视场下的焦点归一化强度图....................................... 51

4.11  中心波长的聚焦仿真结果分析图..................................................................... 52

4.12  中心波长处的大视场成像仿真结果图.............................................................. 53

4.13  5nm带宽处不同视场下的焦点归一化强度图................................................... 54

4.14  5nm带宽处的聚焦仿真结果分析图................................................................. 55

4.15  5nm带宽处的大视场成像仿真结果图............................................................. 56

4.16  10nm带宽处不同视场下的焦点归一化强度图................................................. 57

4.17  10nm带宽处的的聚焦仿真结果分析图............................................................ 58

4.18  10nm带宽处的大视场成像仿真结果图............................................................ 59

表目录

3.2  双层超表面透镜分别对应的相位函数常数aibi参数表... 29

3.3  不同入射角对应的半高全宽数据表... 36

4.1  相位函数常数表... 41

4.2  中心波长处不同入射角对应的半高全宽数据表... 52

4.3  5nm带宽处不同入射角对应的半高全宽数据表... 55

4.4  10nm带宽处不同入射角对应的半高全宽数据表... 58

 

Pages76
Language中文
Document Type学位论文
Identifierhttp://ir.ioe.ac.cn/handle/181551/9082
Collection光电技术研究所博硕士论文
Recommended Citation
GB/T 7714
何德伟. 大视场级联超表面透镜的聚焦与成像设计方法研究[D]. 中国科学院光电技术研究所研究生部305教室. 中国科学院光电技术研究所,2019.
Files in This Item:
File Name/Size DocType Version Access License
大视场级联超表面透镜的聚焦与成像设计方法(23843KB)学位论文 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[何德伟]'s Articles
Baidu academic
Similar articles in Baidu academic
[何德伟]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[何德伟]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.