IOE OpenIR  > 光电探测技术研究室(三室)
Robust vehicle detection in aerial images based on cascaded convolutional neural networks
Zhong, Jiandan1,2,3; Lei, Tao1; Yao, Guangle1,2,3
2017
发表期刊Sensors (Switzerland)
ISSN1424-8220
卷号17期号:12页码:2720
摘要Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.
关键词Aerial photography - Convolution - Decision making - Deep learning - Image processing - Neural networks - Object detection - Object recognition - Vehicles
收录类别Ei
语种英语
文献类型期刊论文
条目标识符http://ir.ioe.ac.cn/handle/181551/8897
专题光电探测技术研究室(三室)
作者单位1.Institute of Optics and Electronics, Chinese Academy of Sciences, No. 1, Guangdian Avenue, Chengdu; 610209, China;
2.School of Optoelectronic Information, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu; 610054, China;
3.University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing; 100039, China
推荐引用方式
GB/T 7714
Zhong, Jiandan,Lei, Tao,Yao, Guangle. Robust vehicle detection in aerial images based on cascaded convolutional neural networks[J]. Sensors (Switzerland),2017,17(12):2720.
APA Zhong, Jiandan,Lei, Tao,&Yao, Guangle.(2017).Robust vehicle detection in aerial images based on cascaded convolutional neural networks.Sensors (Switzerland),17(12),2720.
MLA Zhong, Jiandan,et al."Robust vehicle detection in aerial images based on cascaded convolutional neural networks".Sensors (Switzerland) 17.12(2017):2720.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2017-2137.pdf(7314KB)期刊论文出版稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhong, Jiandan]的文章
[Lei, Tao]的文章
[Yao, Guangle]的文章
百度学术
百度学术中相似的文章
[Zhong, Jiandan]的文章
[Lei, Tao]的文章
[Yao, Guangle]的文章
必应学术
必应学术中相似的文章
[Zhong, Jiandan]的文章
[Lei, Tao]的文章
[Yao, Guangle]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。