中国科学院光电技术研究所机构知识库
Advanced  
IOE OpenIR  > 微细加工光学技术国家重点实验室(开放室)  > 会议论文
题名:
Improved near field lithography by surface plasmon resonance
作者: Zeng BEibEi; Zhao Yanhui; Fang Liang; Wang Changtao; Luo Xiangang
出版日期: 2009
会议名称: Proceedings of SPIE
会议日期: 2009
通讯作者: Zeng BEibEi
中文摘要: Conventionally, the finest pattern obtained in optical lithography is determined by wavelength and numerical aperture of optical system, due to diffraction effect. This principle delivers theoretical obstacles for nano lithography using conventional light source, like Hg lamp. According to theory, this obstacle can be circumvented with near field lithography (NFL) technique, just by confining the mask and photo resist into sub-wavelength dimensions. Sub-wavelength patterns with features down to 100nm can be realized in the NFL, as demonstrated numerically and experimentally in many papers. One obvious problem associated with NFL is that low efficiency in the lithography process, since it is difficult to transmit through sub-wavelength scaled apertures in the mask. This usually results in the deleterious effect to the patterns on photo resist. In this paper, we demonstrate that the extraordinary optical transmission (EOT) effect helps to solve this problem. It is found that noble metal, instead of chromium, usually gives much greater transmission when employed as mask material. The enhancement is contributed to resonant excitation of surface plasmon mode. Further, the transmission can be enhanced by appropriately design of patterns. The polarization of illumination light affects lithography efficiency as well. As illustrative examples, mask patterns like lines group, grating structure and holes array are designed and simulated with greatly improved lithography efficiency. This method is believed to have potential applications in nano lithography.
英文摘要: Conventionally, the finest pattern obtained in optical lithography is determined by wavelength and numerical aperture of optical system, due to diffraction effect. This principle delivers theoretical obstacles for nano lithography using conventional light source, like Hg lamp. According to theory, this obstacle can be circumvented with near field lithography (NFL) technique, just by confining the mask and photo resist into sub-wavelength dimensions. Sub-wavelength patterns with features down to 100nm can be realized in the NFL, as demonstrated numerically and experimentally in many papers. One obvious problem associated with NFL is that low efficiency in the lithography process, since it is difficult to transmit through sub-wavelength scaled apertures in the mask. This usually results in the deleterious effect to the patterns on photo resist. In this paper, we demonstrate that the extraordinary optical transmission (EOT) effect helps to solve this problem. It is found that noble metal, instead of chromium, usually gives much greater transmission when employed as mask material. The enhancement is contributed to resonant excitation of surface plasmon mode. Further, the transmission can be enhanced by appropriately design of patterns. The polarization of illumination light affects lithography efficiency as well. As illustrative examples, mask patterns like lines group, grating structure and holes array are designed and simulated with greatly improved lithography efficiency. This method is believed to have potential applications in nano lithography.
收录类别: Ei
语种: 英语
卷号: 7284
文章类型: 会议论文
内容类型: 会议论文
URI标识: http://ir.ioe.ac.cn/handle/181551/7872
Appears in Collections:微细加工光学技术国家重点实验室(开放室)_会议论文

Files in This Item:
File Name/ File Size Content Type Version Access License
2009-122.pdf(353KB)会议论文--限制开放View 联系获取全文

作者单位: 中国科学院光电技术研究所

Recommended Citation:
Zeng BEibEi,Zhao Yanhui,Fang Liang,et al. Improved near field lithography by surface plasmon resonance[C]. 见:Proceedings of SPIE. 2009.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Zeng BEibEi]'s Articles
[Zhao Yanhui]'s Articles
[Fang Liang]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Zeng BEibEi]‘s Articles
[Zhao Yanhui]‘s Articles
[Fang Liang]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 2009-122.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院光电技术研究所 - Feedback
Powered by CSpace