中国科学院光电技术研究所机构知识库
Advanced  
IOE OpenIR  > 微电子装备总体研究室(四室)  > 会议论文
题名:
Iterative learning control for synchronization of reticle stage and wafer stage in step-and-scan lithographic equipment
作者: Li, Lan-Lan1,2; Hu, Song1; Zhao, Li-Xin1; Ma, Ping1
出版日期: 2013
会议名称: Proceedings of SPIE: International Symposium on Photoelectronic Detection and Imaging 2013: Micro/Nano Optical Imaging Technologies and Applications
会议日期: 2013
学科分类: Chaos theory - Controllers - Equipment - Experiments - Iterative methods - Optical instruments - Scanning - Synchronization
DOI: 10.1117/12.2034943
中文摘要: Lithographic equipments are highly complex machines used to manufacture integrated circuits (ICs). To make larger ICs, a larger lens is required, which, however, is prohibitively expensive. The solution to this problem is to expose a chip not in one flash but in a scanning fashion. For step-and-scan lithographic equipment (wafer scanner), the image quality is decided by many factors, in which synchronization of reticle stage and wafer stage during exposure is a key one. In this paper, the principle of reticle stage and wafer stage was analyzed through investigating the structure of scanners, firstly. While scanning, the reticle stage and wafer stage should scan simultaneously at a high speed and the speed ratio is 1:4. Secondly, an iterative learning controller (ILC) for synchronization of reticle stage and wafer stage is presented. In the controller, a master-slave structure is used, with the wafer stage acting as the master, and the reticle stage as the slave. Since the scanning process of scanner is repetitive, ILC is used to improve tracking performance. A simple design procedure is presented which allows design of the ILC system for the reticle stage and wafer stage independently. Finally, performance of the algorithm is illustrated by simulated on the virtual stages (the reticle stage and wafer stage). The results of simulation experiments and theory analyzing demonstrate that using the proposed controller better synchronization performance can be obtained for the reticle stage and wafer stage in scanner. Theory analysis and experiment shows the method is reasonable and efficient. © 2013 SPIE.
英文摘要: Lithographic equipments are highly complex machines used to manufacture integrated circuits (ICs). To make larger ICs, a larger lens is required, which, however, is prohibitively expensive. The solution to this problem is to expose a chip not in one flash but in a scanning fashion. For step-and-scan lithographic equipment (wafer scanner), the image quality is decided by many factors, in which synchronization of reticle stage and wafer stage during exposure is a key one. In this paper, the principle of reticle stage and wafer stage was analyzed through investigating the structure of scanners, firstly. While scanning, the reticle stage and wafer stage should scan simultaneously at a high speed and the speed ratio is 1:4. Secondly, an iterative learning controller (ILC) for synchronization of reticle stage and wafer stage is presented. In the controller, a master-slave structure is used, with the wafer stage acting as the master, and the reticle stage as the slave. Since the scanning process of scanner is repetitive, ILC is used to improve tracking performance. A simple design procedure is presented which allows design of the ILC system for the reticle stage and wafer stage independently. Finally, performance of the algorithm is illustrated by simulated on the virtual stages (the reticle stage and wafer stage). The results of simulation experiments and theory analyzing demonstrate that using the proposed controller better synchronization performance can be obtained for the reticle stage and wafer stage in scanner. Theory analysis and experiment shows the method is reasonable and efficient. © 2013 SPIE.
收录类别: Ei
语种: 英语
卷号: 8911
ISSN号: 0277786X
文章类型: 会议论文
页码: 89110X
Citation statistics:
内容类型: 会议论文
URI标识: http://ir.ioe.ac.cn/handle/181551/7660
Appears in Collections:微电子装备总体研究室(四室)_会议论文

Files in This Item:
File Name/ File Size Content Type Version Access License
2013-2108.pdf(259KB)会议论文--限制开放View 联系获取全文

作者单位: 1. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
2. University of Chinese Academy of Sciences, Beijing 100039, China

Recommended Citation:
Li, Lan-Lan,Hu, Song,Zhao, Li-Xin,et al. Iterative learning control for synchronization of reticle stage and wafer stage in step-and-scan lithographic equipment[C]. 见:Proceedings of SPIE: International Symposium on Photoelectronic Detection and Imaging 2013: Micro/Nano Optical Imaging Technologies and Applications. 2013.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Li, Lan-Lan]'s Articles
[Hu, Song]'s Articles
[Zhao, Li-Xin]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Li, Lan-Lan]‘s Articles
[Hu, Song]‘s Articles
[Zhao, Li-Xin]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 2013-2108.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院光电技术研究所 - Feedback
Powered by CSpace