IOE OpenIR  > 微电子装备总体研究室(四室)
Focusing and leveling in dual stage lithographic system
Jinlong Li; Lixin Zhao; Song Hu; Shaolin Zhou
Volume7657
Pages76571H (7 pp.)
2010
Language英语
Indexed ByEi ; ISTP
Subtype会议论文
AbstractAs a key technology in lithographic system, the wafer stage is a six-degree of freedom and long stroke movement platform whose movement and positioning accuracy are up to nano-scale, and it involves precision machinery, precision measurement, automation and materials science in one complex system. In the lithography process, the function of the stage includes: wafer transmission, alignment, focusing and leveling, scanning exposure and so on. Positioning accuracy of the stage directly affects the alignment accuracy, as well as focusing accuracy, thus affecting the improvement of lithographic resolution as a whole. For the rapid increasing in chip integration, the chip makers acquire higher throughput of the lithographic system, under the demand, there has been dual-stage technology, i.e., in one lithographic system, there are two wafer stages, which separately locates at measurement position and exposure location. They run independently and in parallel, when the measurement and the exposure are completed, the two stages exchange their positions and functions. The dual stage technology not only significantly increases the yield, but also improves the measurement accuracy in focus detection. Focusing and leveling in dual stage is different from that in single stage. In this paper, combination of grating-based focus detection and dual stage technology is used to introduce leveling and focusing in dual-stage system. The principle of focus detection, the way for height information transforming to the wafer leveling data, as well as the servo of focusing and leveling at exposure location are carried out in detail.; As a key technology in lithographic system, the wafer stage is a six-degree of freedom and long stroke movement platform whose movement and positioning accuracy are up to nano-scale, and it involves precision machinery, precision measurement, automation and materials science in one complex system. In the lithography process, the function of the stage includes: wafer transmission, alignment, focusing and leveling, scanning exposure and so on. Positioning accuracy of the stage directly affects the alignment accuracy, as well as focusing accuracy, thus affecting the improvement of lithographic resolution as a whole. For the rapid increasing in chip integration, the chip makers acquire higher throughput of the lithographic system, under the demand, there has been dual-stage technology, i.e., in one lithographic system, there are two wafer stages, which separately locates at measurement position and exposure location. They run independently and in parallel, when the measurement and the exposure are completed, the two stages exchange their positions and functions. The dual stage technology not only significantly increases the yield, but also improves the measurement accuracy in focus detection. Focusing and leveling in dual stage is different from that in single stage. In this paper, combination of grating-based focus detection and dual stage technology is used to introduce leveling and focusing in dual-stage system. The principle of focus detection, the way for height information transforming to the wafer leveling data, as well as the servo of focusing and leveling at exposure location are carried out in detail.
Conference NameProceedings of the SPIE - The International Society for Optical Engineering
Conference Date2010
Document Type会议论文
Identifierhttp://ir.ioe.ac.cn/handle/181551/7637
Collection微电子装备总体研究室(四室)
Corresponding AuthorJinlong Li
Affiliation中国科学院光电技术研究所
Recommended Citation
GB/T 7714
Jinlong Li,Lixin Zhao,Song Hu,et al. Focusing and leveling in dual stage lithographic system[C],2010:76571H (7 pp.).
Files in This Item:
File Name/Size DocType Version Access License
2010-222.pdf(703KB)会议论文 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Jinlong Li]'s Articles
[Lixin Zhao]'s Articles
[Song Hu]'s Articles
Baidu academic
Similar articles in Baidu academic
[Jinlong Li]'s Articles
[Lixin Zhao]'s Articles
[Song Hu]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Jinlong Li]'s Articles
[Lixin Zhao]'s Articles
[Song Hu]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.