中国科学院光电技术研究所机构知识库
Advanced  
IOE OpenIR  > 应用光学研究室(二室)  > 会议论文
题名:
Design of a cryogenic absolute prism refractometer for infrared optical materials
作者: LIAO Sheng; NI LEi; REN Qifeng
出版日期: 2011
会议名称: Proc. of SPIE
会议日期: 2011
通讯作者: LIAO Sheng
中文摘要: In order to enable high quality infrared lens designs at cryogenic temperature, we decided to study the IR materials' optical properties, such as the refractive index, the thermo-optic coefficient (dn/dT) etc. As a matter of fact, accurate precision refractive index data for infrared optical materials at cryogenic temperatures is scarce, so we decided to design a cryogenic absolute prism refractometer for infrared optical materials. Considering the most accurate and precise measurements of the real part of the refractive index, n, optical materials are obtained through minimum deviation refractometry, we decided to choose this classic refractometer for our cryogenic IR materials index measuring. Given the thermo-optic coefficient of many IR materials, which was reported by NASA, the measurement precision is at least 10-3. In order to achieve this precision, the error of apex angle of sample prism and deviation angle must be less than 20 arc-second. The thermal stress of the prism must be in control, or the volume change of the prism may lead to stress birefringence (photo-elastic effect). The bandwidth of IR source must be less than 20nm and the error caused by dispersion (dn/dλ) will generally be negligible in our system. The hardware system consists of 5 subsystems: the rotating sample chamber subsystem, the rotating plat mirror subsystem, the cryogenic vacuum subsystem, auto control subsystem, exit image collimation subsystem. Finally, the system is designed to measure IR materials' indices between 1-4, at the wavelength of 1.0-12μm, at room (300K) and cryogenic temperature (100K), with a precision of 10-4.
英文摘要: In order to enable high quality infrared lens designs at cryogenic temperature, we decided to study the IR materials' optical properties, such as the refractive index, the thermo-optic coefficient (dn/dT) etc. As a matter of fact, accurate precision refractive index data for infrared optical materials at cryogenic temperatures is scarce, so we decided to design a cryogenic absolute prism refractometer for infrared optical materials. Considering the most accurate and precise measurements of the real part of the refractive index, n, optical materials are obtained through minimum deviation refractometry, we decided to choose this classic refractometer for our cryogenic IR materials index measuring. Given the thermo-optic coefficient of many IR materials, which was reported by NASA, the measurement precision is at least 10-3. In order to achieve this precision, the error of apex angle of sample prism and deviation angle must be less than 20 arc-second. The thermal stress of the prism must be in control, or the volume change of the prism may lead to stress birefringence (photo-elastic effect). The bandwidth of IR source must be less than 20nm and the error caused by dispersion (dn/dλ) will generally be negligible in our system. The hardware system consists of 5 subsystems: the rotating sample chamber subsystem, the rotating plat mirror subsystem, the cryogenic vacuum subsystem, auto control subsystem, exit image collimation subsystem. Finally, the system is designed to measure IR materials' indices between 1-4, at the wavelength of 1.0-12μm, at room (300K) and cryogenic temperature (100K), with a precision of 10-4.
收录类别: Ei
语种: 英语
卷号: 8321
文章类型: 会议论文
页码: 832117-1
内容类型: 会议论文
URI标识: http://ir.ioe.ac.cn/handle/181551/7451
Appears in Collections:应用光学研究室(二室)_会议论文

Files in This Item:
File Name/ File Size Content Type Version Access License
2011-02-002.pdf(493KB)会议论文--限制开放View 联系获取全文

作者单位: 中国科学院光电技术研究所

Recommended Citation:
LIAO Sheng,NI LEi,REN Qifeng. Design of a cryogenic absolute prism refractometer for infrared optical materials[C]. 见:Proc. of SPIE. 2011.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[LIAO Sheng]'s Articles
[NI LEi]'s Articles
[REN Qifeng]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[LIAO Sheng]‘s Articles
[NI LEi]‘s Articles
[REN Qifeng]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 2011-02-002.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院光电技术研究所 - Feedback
Powered by CSpace