IOE OpenIR  > 光电技术研究所博硕士论文
数字视频图象预处理方法的研究
刘旨春
Subtype硕士
Thesis Advisor王敬儒
2001
Degree Grantor中国科学院光电技术研究所
Place of Conferral中国科学院光电技术研究所
Keyword图象增强 预处理 信噪比snr 可编程asic
Abstract本文首先讲述了视频图象信号的特点,及一些常见噪声的数学模型和常用的图象增强的基本方法。接着又分析了包含有小目标的图象的特点,提出了该类图象的数学模型及SNR的定义,根据这一模型,决定采用高通滤波来对包含有小目标的图象进行预处理。仿真结果证明该方法既能提高信噪比,改善增益,同时又能保持对突变信号的良好分辨率。因为预处理电路采用PFGA来设计,所以本文又以XILINX分司的4000系列FPGA为例叙述了可编程ASIC中功能强大的一个重要成员—FPGA的结构、特点及开发使用,并引入了电路与系统及可编程集成数字系统的现代设计方法。介绍了高通滤波算法的FPGA实现,叙述了该预处理电路的原理,FPGA的实现和测试结果。最后,指出了FPGA在图象处理系统中的应用前景。
Other AbstractThe paper firstly presents the features of video image, the model of noise, the common method of image-enhancement. And it analyses the features of image including of the small target, the means of SNR. At the base of this model, the high-pass filtering in spatial domain is used in the design. The simulation results proves that this method is effective with a useful SNR gain at the same time of having a good resolution in irregular information. For FPGA is used in the design of the preprocessing circle, there described the structures、features and applications of 4000 serial FPGA of Xilinx as a example of FPGA-one of the power and wide used members of programmable ASIC. The modern designing technique of circuit and system and programmable integrated circuit was introduced. The high-pass filtering circle was finished with FPGA. Then the one applications of FPGA in image processing system was presented. The preprocessing circuit was analyzed at first and then the way to solve the problem、FPGA implementation and the result of circuit test were presented; At the end the future of application of FPGA in image processing system was pointed out.
Pages65
Language中文
Document Type学位论文
Identifierhttp://ir.ioe.ac.cn/handle/181551/63
Collection光电技术研究所博硕士论文
Recommended Citation
GB/T 7714
刘旨春. 数字视频图象预处理方法的研究[D]. 中国科学院光电技术研究所. 中国科学院光电技术研究所,2001.
Files in This Item:
File Name/Size DocType Version Access License
LW005422.pdf(2339KB) 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘旨春]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘旨春]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘旨春]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.