中国科学院光电技术研究所机构知识库
Advanced  
IOE OpenIR  > 光电技术研究所博硕士论文  > 学位论文
题名:
基于绝对差分算法的太阳自适应光学实时波前处理技术研究
作者: 彭晓峰
学位类别: 博士
答辩日期: 2009-06-01
授予单位: 中国科学院光电技术研究所
授予地点: 光电技术研究所
导师: 饶长辉
关键词: 自适应光学 ; 扩展目标 ; 相关跟踪 ; 绝对差分算法 ; 脉动阵列 ; 可编程逻辑器件 ; 现场可编程门阵列
其他题名: Real-time Wave-front Processing of Solar Adaptive Optical System Based on Absolute Difference Algorithm
学位专业: 信号与信息处理
中文摘要: 太阳自适应光学在进行波前处理时所使用的算法运算量巨大,然而太阳自适应光学系统又有着较高的实时性要求。如何利用现有技术设计出能够在大运算量条件下仍然满足太阳自适应光学系统高实时性要求的波前处理机是本文的核心内容。 太阳自适应光学系统在进行波前误差探测时,使用太阳表面的太阳黑子和米粒结构这类扩展目标做为探测信标。因此,波前处理机在利用信标提取波前误差时必须使用扩展目标适用的算法。从世界上现有太阳自适应光学系统的波前处理方案中可以看出,为了提高处理机性能,以满足大运算量下的实时性要求,各个系统的波前处理机都不约而同的采用了并行处理技术,只是具体的实现形式不同。本文对高性能运算中所经常采用的各种大规模并行计算技术进行了研究,分析了各种技术的特点,并给出了评价指标。同时,本文对做为并行计算承载硬件的现场可编程门阵列(Field Programmable Gate Array)进行了介绍,深入解读了FPGA的开发流程。 在进行了一系列的理论研究后,本文把并行计算技术和具体算法结合起来。首先,在FPGA内以流水线的形式实现了太阳自适应光学中波前误差提取所采用的绝对差分算法,并采用二维脉动阵列技术对其进行了有效加速。然后,本文使用SIMD并行处理结构,利用多个并行绝对差分处理通道,完成了对子孔径阵列的高速并行处理。在应用于实际系统时,本文采取FPGA和DSP协同工作的方式制作出了板卡形式的波前处理机,其中FPGA为处理机核心,DSP为协处理器。板卡使用PCI 9054通信芯片通过CPCI接口和计算机相连。本文对处理机板卡进行了全面的软件仿真和硬件测试。理论分析,软件仿真,以及实验结果表明,该波前处理机能够满足太阳自适应光学系统的要求。 在处理机的兼容性和可扩展性方面,本文分析了为适应各种不同的太阳自适应光学系统,波前处理机所需要做出的改动。分析结果表明,无论是子孔径大小,子孔径排布规模,还是波前传感器采样频率发生了变化,波前处理机的工作原理都同样适用。因此本文所设计的波前处理机拥有相当强的适应性。 本文研制了国内第一套基于哈特曼-夏克波前传感器的,用于太阳观测中高阶像差校正的高速波前处理机。首次在单片可编程逻辑器件内实现了对子孔径阵列图像的高速并行处理。该系统使用37单元变形镜,针对6×6排布子孔径阵列,最高支持的波前传感器采样频率达到了9470Hz,单帧计算延迟17.6us。本文的波前处理机除了性能强,成本低,集成度高以外,同时还具有维护简单,兼容性强,升级容易的特点。
英文摘要: Although algorithm of wave-front processing in solar adaptive optics is characterized by much computation, real-time performance is necessary for solar adaptive optical system. The purpose of this doctoral dissertation is to design a wave-front processor, which can satisfy the real-time requirement of solar adaptive optical system under the pressure of much computation, with available technology. In the wave-front aberration detection of solar adaptive optics, solar pore and granulation, which are extended objects, are usually used as beacon. To detect the wave-front aberration by the beacon, wave-front processor has to introduce some kind of algorithm that works well with extended object. Current solar adaptive optical systems in the world show clearly that parallel technology is widely used in all wave-front processors only in different forms. Parallel technology improves the processing ability and makes the wave-front processor meet the real-time requirement of solar adaptive optical system. Research work is done on different parallel technologies and evaluation method is given. Field programmable gate array (FPGA) on which parallel technology can work is introduced too, and its developing flow is examined in detail. After studying the basic theories, parallel technology is applied in the wave-front processing. First, absolute difference algorithm employed in wave-front aberration detection is implemented in a pipeline way and further accelerated by 2-dimention systolic array. Then a multi-channel SIMD architecture is used to process the sub-aperture array in parallel. When it is put into practice, a FPGA-DSP co-working hardware board is produced of which FPGA works as the core processor while DSP as the co-processor. The processor board communicates with PC through CPCI interface, with the help of PCI 9054. Software simulations and hardware tests both prove that this wave-front processor works very well and can satisfy the requirement of the solar adptive optical system. Both compatibility of the wave-front processor and the modification needed for different solar adaptive optical system are analyzed. Results show that principle of this processor is applicable to solar adaptive optical system despite of size of sub-aperture, scale of the sub-aperture array and image sensor sampling rate. So this wave-front processor can be used in many different solar adaptive optical systems. The first domestic wave-front processor of solar adaptive optical system that can compensate the high order aberration during solar observation is described here. It is the first time that the processing of sub-aperture array is accomplished in a single programmable logic device chip. In a system with 6×6 sub-aperture array, a 37-element deformable mirror is used. Calculation delay of one frame is 17.6us and the highest frame rate that the wave-front sensor supports can be up to 9470 Hz. This wave-front processor is high-performance, low-cost and compact. Besides, it is highly compatible and can be easily maintained and upgraded.
语种: 中文
内容类型: 学位论文
URI标识: http://ir.ioe.ac.cn/handle/181551/341
Appears in Collections:光电技术研究所博硕士论文_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
10001_200618015120012彭晓峰_paper.pdf(6015KB)----限制开放View 联系获取全文

Recommended Citation:
彭晓峰. 基于绝对差分算法的太阳自适应光学实时波前处理技术研究[D]. 光电技术研究所. 中国科学院光电技术研究所. 2009.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[彭晓峰]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[彭晓峰]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 10001_200618015120012彭晓峰_paper.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院光电技术研究所 - Feedback
Powered by CSpace