中国科学院光电技术研究所机构知识库
Advanced  
IOE OpenIR  > 光电技术研究所博硕士论文  > 学位论文
题名:
大口径非球面镜的环形子孔径检测技术研究
作者: 侯溪
学位类别: 博士
答辩日期: 2007-05-24
授予单位: 中国科学院光电技术研究所
授予地点: 光电技术研究所
导师: 伍凡
关键词: 光学测量 ; 干涉计量 ; 非球面 ; 环形子孔径 ; 拼接
其他题名: Annular subaperture interferometric method for testing large aspheric mirror
学位专业: 光学工程
中文摘要: 随着光学加工和检测技术的不断发展,以非球面镜为关键部件的大口径光学系统在天文、空间光学等领域得到了愈来愈广泛的应用。大口径非球面镜的制造需要相应的检测技术;大口径非球面高精度定量检测技术一直是先进光学制造领域研究的前沿课题,仍然面临很多挑战。通常的定量检测方法(自准直法、补偿器法、计算全息法)均需首先制造相应的辅助元件,如大口径反射镜、补偿器、计算全息板等。本论文所研究的环形子孔径技术是一种无需辅助元件就能检测旋转对称的大口径非球面镜的有效手段,该技术大大降低了检验成本,同时可以消除辅助元件的设计、制造和调整误差对最终检测精度的影响;此外还可以与其它常用检测方法的结果进行比较,确保最终检测的可靠性。本论文研究工作的主要任务就是要有效解决环形子孔径检测技术的关键理论和技术问题,进一步发展环形子孔径检测技术。论文的研究工作包括以下几个部分: (1).充分调研了子孔径拼接技术的国内外研究现状,并对其进行了归纳分类。深入研究了环形子孔径检测技术的原理,在此基础上讨论了环形子孔径技术的实验系统组成和工作过程,提出了检测大口径非球面镜的实施方案;并对其中所涉及的关键问题和技术难点进行了分析。 (2).环形子孔径拼接算法是该技术的最终实现手段,也是本文研究的核心和关键问题。对已存在的两种有代表性的基于离散相位值和基于圆Zernike多项式的数据处理方法进行了分析比较,在此基础上并考虑到具体实施情况,提出了更适合于大口径非球面镜检测的基于环Zernike多项式和矩阵技术的拼接算法,对算法进行了数值仿真验证和灵敏度分析。最后,提出了环形子孔径实验数据处理流程,并进行了“准”实验数据的仿真验证。 (3).该技术检测大口径非球面镜时所需子孔径数目较多,而且随着非球面镜面斜率变化的不一样将使得各个子孔径的大小不相同,这大大增加了子孔径数据准确提取的难度,因此研究子孔径划分模型是一项有意义的工作。根据环形子孔径技术的检测原理,从几何光学的角度建立了子孔径划分模型,并给出了模型数值求解的具体方法。以一口径为700mm、中心遮拦为160mm、顶点曲率半径为3000mm的抛物面镜为例进行了数值计算,且从物理光学的角度对数值计算结果进行了进一步分析和解释,并进行了初步的实验研究。结果表明该模型具有较好的预测效果,它可为实际检测方案设计提供理论依据,使得检测过程能够可控、量化和可重复;该模型是环形子孔径检测技术在理论上的一个补充。 (4).准确提取出环形子孔径测试数据是进行“拼接”处理的前提和基础。根据环形子孔径检测技术的原理及基于环Zernike多项式的拼接算法,提出了一种相应的环形子孔径数据提取方法,该方法基于商用相移干涉仪的CCD成像系统和其数据处理软件提供的Mask编辑功能,并利用被测镜面上方的三个可移动的基准标记进行绝对定位,给出了具体的实施方案。对一口径为700mm、F2的抛物面主镜的实验研究结果表明,该数据提取方法操作简单可行,适合于加工车间的实施,取得了符合“拼接”算法需求的子孔径测试数据和对应环带的内外半径值。此外,还对所获得的子孔径数据及所对应被测镜面位置进行了分析讨论,以验证所提出的环形子孔径规划模型的有效性。 (5).为了验证所提出的环形子孔径拼接算法的可行性,分别对最早开展环形子孔径检测技术研究的美国Arizona光学中心报道的实验数据和对一口径为630mm、F1.3抛物面镜中心部分直径约为325mm的环形子孔径检测数据进行拼接处理,将其处理结果与传统的自准直检测结果进行比较。此外,对实验中的主要误差来源进行了分析和分类,主要讨论了边界误差对精度的影响。
英文摘要: With the constant development of optical fabrication and measurement technique, the large-aperture optical system are generally used in astronomy, space optics applications, in which the large aspheric mirror has increasingly become one of the key components. However, the fabrication of large aspheric mirror requires the corresponding testing method, and the high-precision and quantitative measurement of large aspheric mirror continues to be a challenge in the research field about advanced optical manufacture. In those ordinary quantitative testing methods for large aspheric mirrors such as auto-collimation, null optics compensator, computer-generated hologram (CGH), the corresponding additional elements (large reflector, optics compensator, CGH with the adequate precision must be firstly fabricated. The annular subaperture interferometric technique researched in this dissertation is an effective method for testing rotationally symmetric and large-aperture aspheric mirrors. Testing without use of the additional elements, the cumulative errors caused by the design, fabrication, and misalignments of that will be removed, and the measurement cost will be greatly reduced. To ensure the reliability of the final measurement, the test results obtained by the annular subaperture method can also be compared with that of the other methods. This thesis is dedicated to solve the key theoretical and technical problems for annular subaperture interferometric method, and further develop this promising method. The major research efforts are summarized in the following: (1). The domestic and overseas development status about the subaperture stitching technique is adequately investigated, and the stitching method is classified by the shape of subaperture. Based on the measurement principle of annular subaperture method, the scheme of experimental system and working process are discussed, and the scheme for testing large aspheric mirror is also presented. The involved key problems and technical difficulties are analyzed. (2). The annular subaperture stitching algorithm is not only the final implement means of this new method, but also the kernel and key problem researched in this dissertation. The two representative stitching algorithms based on the discrete phase values and Zernike circle polynomials are analyzed and compared, respectively. According to the above analysis results and practical situation, a novel stitching algorithm based on Zernike annular polynomials and matrix method is proposed. Numerical simulations and sensitivity analysis for the proposed algorithm are also provided. Moreover, a thorough processing flow for experimental data is presented, and the validity of the process is demonstrated by quasi-experimental data simulation. (3). When the annular subaperture method is applied to larger aspheric mirror, the more annular subapertures are required, and the size of every subaperture is different with the different slope change of aspheric mirrors. Therefore, the study on layout of subapertures is meaningful. Based on the measurement principle of annular subaperture method, a subaperture layout model is established with the geometry optics theory, and the numerical solving method is also provided in detail. Taking a parabolic mirror with clear aperture of 700-mm, center obscuration of 160-mm, and vertex curvature radius of 3000-mm as an example, we attempt to analyze and explain the numerical results of the model with the corresponding physical optics theory. The results show that the model is better in predictability, and it will provide the theory basis for the practical measurement and also will make the measurement process more contollable, quantitative and repeatable. The layout model is a complementarity in theory about annular subaperture interferometric technique. (4). The accurate extraction of annular subaperture data is a precondition in the data stitching process. According to the measurement principle and stitching algorithm with Zernike annular polynomials, a corresponding extraction method of annular subaperture data is provided, which are based on the CCD imaging system of a commercial interferometer and “mask” function in the data process software, and absolute position is confirmed by three mobile fiducial marks above the tested aspheric mirror. The manipulative scheme is provided in detail. Experimental results of testing an f/2, 700-mm parabolic mirror with 160-mm central obscuration show that the extraction method is efficient and simple. In addition, the method is suitable for optical fabrication shop, and the annular subaperture data and the corresponding radius values required by the stitching algorithm are obtained. To verify the validity of the annular subaperture layout model, the above experimental data and the corresponding position of every subaperture in the tested aspheric mirror are analyzed and discussed. (5). To demonstrate the feasibility of the annular subaperture stitching algorithm, the experimental data reported in 1988 by College of Optical Sciences of the University of Arizona in America is first stitched with the above algorithm, and the results will be compared with that of the published paper. An auto-collimation measurement will also be compared with the annular subaperture measurement of the center part with about 325-mm diameter of an f/1.3, 630-mm parabolic mirror. The source of the main errors in experiment is analyzed and classified, and the effects of edge errors on measurement precision are mainly discussed.
语种: 中文
内容类型: 学位论文
URI标识: http://ir.ioe.ac.cn/handle/181551/215
Appears in Collections:光电技术研究所博硕士论文_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
10001_200418015120006侯溪_paper.pdf(4486KB)----限制开放View 联系获取全文

Recommended Citation:
侯溪. 大口径非球面镜的环形子孔径检测技术研究[D]. 光电技术研究所. 中国科学院光电技术研究所. 2007.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[侯溪]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[侯溪]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 10001_200418015120006侯溪_paper.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院光电技术研究所 - Feedback
Powered by CSpace