中国科学院光电技术研究所机构知识库
Advanced  
IOE OpenIR  > 光电技术研究所博硕士论文  > 学位论文
题名:
新型光电跟踪转台系统动力学特性分析
作者: 徐征峰
学位类别: 博士
答辩日期: 2007-06-04
授予单位: 中国科学院光电技术研究所
授予地点: 光电技术研究所
导师: 陈洪斌
关键词: 跟踪架 ; 动力模型修正 ; 优化设计 ; 非线性解耦 ; 自适应控制 ; 精度
其他题名: The Dynamics Analysis of New Fashioned Photoelectric Tracking Theodolite
学位专业: 光学工程
中文摘要: 跟踪转台是光电跟踪测量系统实现捕获跟踪瞄准的机电一体化平台,由于其高精度、高动态性能等特点,在跟踪架设计阶段要求达到一定的动态特性指标。作为光电跟踪测量系统中的关键部件,跟踪架的优化设计是跟踪架设计中的关键技术之一,为了解决跟踪架设计中降低转动惯量与提高刚度的矛盾,使跟踪架质量分布更加合理,对跟踪架提出基于动态特性的优化设计是十分必要的。 本文阐述了光电跟踪测量系统国内外的发展现状和趋势、机械结构动力优化设计的国内外研究现状、机械结构动力学修改方法及其研究现状、解耦控制研究现状和自适应控制理论发展状况。 介绍了关于滚动轴承的支承刚度矩阵分析中的研究进展,并指出了以往研究的不足之处,建立了跟踪架支承轴承的刚度矩阵计算的数学模型。应用弹性理论和轴承内部的几何关系,推导了滚动轴承在联合载荷作用下,轴承刚度矩阵的数学表达式,并研究了数学模型的数值计算方法,数值解的存在性。然后对二轴跟踪架各轴系做了全面的力学分析,根据跟踪架的实际受载情况,推导和计算了支承轴承所受的载荷,计算出外框轴系轴承的刚度矩阵,采用质量和转动惯量相匹配的原则对二轴跟踪架内框架进行实体特征建模及模型简化,将轴承的刚度矩阵作为边界元添加在有限元模型相应的节点上,用有限元法对内框架进行动态特性分析。 在光电跟踪转台轴系动力学分析的基础上,对二轴跟踪系统的内框架进行了基于动态特性的优化设计。以内框架为研究对象,采用有限元法和目标函数的灵敏度分析法对内框架进行了动态特性计算分析,并基于人工神经网络对框架进行了动力模型修正分析。在内框架动态特性计算分析及修正后的框架动力模型的基础上,针对框架的受力及变形的特点,进一步提出了框架变结构的优化设计方法,以内框架的固有频率和质量为优化目标函数,以内框架结构尺寸参数和初始一阶 固有频率为约束条件,应用ANSYS对其进行结构优化设计,使框架在满足动态指标的前提下,获得更合理的框架结构,使材料分布更有效,从而优化框架的结构。 由于二轴跟踪架存在空间跟踪盲区,可通过视轴偏心三轴跟踪架来实现大范围的跟踪,又能实现高精度快速跟踪机动目标。本文针对视轴偏心三轴跟踪架在运行过程中,存在的轴间非线性耦合提出了非线性解耦的方法,研究了自适应控制理论在视轴偏心跟踪架控制系统中的应用,并进行了仿真分析。 首先,运用运动学和动力学的有关理论建立了视轴偏心跟踪架的控制对象数学模型,并从数学模型和仿真结果两方面着手分析,发现视轴偏心跟踪架在运行过程中,存在着较为严重的非线性耦合,为取得较好的控制效果,必须对其进行解耦设计。然后针对上述问题,研究了非线性解耦方法,提出用状态静态反馈实现非线性解耦,并进行仿真实验,从仿真的结果可以看出,非线性解耦设计实现了将跟踪架的三个轴分解为三个互不影响的单输入输出系统。接着研究了模型参考自适应控制器的设计方法,提出用超稳定性理论的设计方法进行自适应模型跟随控制器设计,来解决建模过程中由于略去相对小量而使跟踪架的数学模型不精确以及系统在运行过程中受到外界的干扰而使系统参数发生变化的问题。仿真结果表明,当系统参数发生一定范围的变化时,本文所设计的自适应模型跟随控制器能起到良好的跟踪效果。 最后本文归纳了光电跟踪转台精度的影响因素,就视轴偏心三轴跟踪架轴的不垂直度、不正交度和回转精度对空间定位和运动精度的影响关系进行了深入分析,给出了水平轴不垂直度和不正交度引起的误差解析表达式和最大值估计公式。然后在跟踪架轴系误差分析的基础上,采用姿态变换方法对视轴偏心三轴跟踪架的指向精度进行分析,指出了指向误差的实质及各误差项的关系,提出了一种指向精度的计算方法,并进行了实例计算。
英文摘要: Gimbal of photoelectric tracking system is optical and electronic instrument that can track and measure space flying object. Because of characteristic of the high error and dynamic performance, the gimbal design is reached dynamic characteristic target. Gimbal is pivotal components of photoelectric tracking system, optimum design is pivotal technique of gimbal design, in order to solve the inconsistency of low moment of inertia and high stiffness, to get reasonable mass, the dynamic optimum design of gimbal is necessary. This dissertation summarizes the development and present state of domestic and foreign photoelectric tracking system, including dynamic optimum analysis and dynamic modal modification method of the mechanical structures, the basic theory and recent research state of decoupling control and adaptive control. The research evolution of the supporting stiffness matrix analysis applied to rolling contact bearing, and the defects of available study in the supporting stiffness matrix analysis is presented. The mathematical model for calculation the stiffness matrix of rolling contact bearing of gimbal is established. The mathematical expression of bearing stiffness of rolling contact bearing under the combined load is derived using elastic theory and geometric relation of bearing; the numerical calculation method and existence of solution of mathematical model are also studied. Afterwards, the comprehensive mechanical analysis of the shaft-bearing system is conducted, the external loads of bearing are calculated in term of the practical loaded condition of the two-axle gimbal, and the bearing stiffness matrix of outside frame shaft is calculated. During the modeling full-scale mock-up and predigesting model of inside frame shaft, the principle of machining mass and processional moment is introduced. The bearing stiffness matrix is added to the corresponding nodes of the model as the boundary elements, by the finite element method, the dynamic characteristics of inside frame are analyzed. The dynamic optimum design of inside frame of two-axle gimbal is carried through on the base of shaft dynamics analysis. By the finite element method and parameter sensitivity analysis, the structure dynamics of inside frame is analyzed, subsequently, the structure dynamical model of inside frame is modified combined with artificial neural network, furthermore, based on the dynamic characteristics computation and updated frame model, the optimization method of variation section frame is presented according to the suffered force and deformation of inside frame. Taking the natural frequency and mass of inside frame as objection functions, the structure is optimized using ANSYS under restricting condition of structural dimensions and initialization natural frequency. The reasonable configuration of frame is got on condition of dynamics characteristic. In order to solve the problem of blind region and also track object with high precision and speediness, a new three-axle photoelectric theodolite system with collimation axis eccentricity is brought forward. It can achieve large-scale space tracking by means of mutual conversion of tracking modes. Aiming for axial nonlinear coupling during the operation of a three-axle gimbal, a method of nonlinear decoupling is developed, and application of adaptive control theory in a three-axle gimbal control system is designed. The simulation shows that it can achieve good control performance. Firstly, the math model of a three-axle gimbal is building in the base of application of kinematics and dynamics. We find that there is serious nonlinear coupling during the operation of a three-axle gimbal through analyzing the math model of a three-axle gimbal and the simulation. Aiming for good control performance, the design of decoupling is necessary. Secondly, for solving the above-mentioned problem, we study the techniques of nonlinear decoupling, and propose the method of nonlinear decoupling through static state feedback. The simulation shows that the three-axle control system is divided into three SISOs(single input and single output systems)through the design of nonlinear decoupling achieve. Thirdly, we study the design of model reference adaptive controller, propose the design method of adaptive model following controller based on hyper-stability theorem. The method can solve the problem that the three-axle gimbal’s math model is not exact because the smaller number is ignored in the course of building the three-axle gimbal’s math model, and the problem that the parameters are variable when the system is disturbed during the operation of the gimbal. The simulation results show that the designed controller can achieve good performance when the parameters are variable in a range. Finally, the effect factors of photoelectric tracking system error are summarized. The effect relation of im-perpendicularity error, im-intersection error and rotator error that affect the tracking error is analyzed, the error analytical expression and maximal estimation formula of im-perpendicularity error and im-intersection error are got. By means of the attitude transformation and geostatics, the new photoelectric theodolite is analysed, then specific calculation method for pointing error and the relation of errors are given out on base of the analysis of shaft error. Thereby the material gimbal pointing error calculation is carried through.
语种: 中文
内容类型: 学位论文
URI标识: http://ir.ioe.ac.cn/handle/181551/169
Appears in Collections:光电技术研究所博硕士论文_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
10001_200318015103138徐征峰_paper.doc(13870KB)----限制开放View 联系获取全文

Recommended Citation:
徐征峰. 新型光电跟踪转台系统动力学特性分析[D]. 光电技术研究所. 中国科学院光电技术研究所. 2007.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[徐征峰]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[徐征峰]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 10001_200318015103138徐征峰_paper.doc
格式: Microsoft Word
此文件暂不支持浏览
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院光电技术研究所 - Feedback
Powered by CSpace